截至目前,引用Bioss產品發(fā)表的文獻共20043篇,總影響因子89696.086分,發(fā)表在Nature, Science, Cell以及Immunity等頂級期刊的文獻共53篇,合作單位覆蓋了清華、北大、復旦、華盛頓大學、麻省理工學院、東京大學以及紐約大學等國際研究機構上百所。
我們每月收集引用Bioss產品發(fā)表的文獻。若您在當月已發(fā)表SCI文章,但未被我公司收集,請致電Bioss,我們將贈予現(xiàn)金鼓勵,金額標準請參考“發(fā)文章 領獎金”活動頁面。
近期收錄2022年8月引用Bioss產品發(fā)表的文獻共236篇(圖一,綠色柱),文章影響因子(IF) 總和高達1302.467,其中,10分以上文獻22篇(圖二)。
圖一
圖二
JOURNAL OF MEDICAL VIROLOGY
[IF=20.693]
作者單位:中南大學醫(yī)學微生物學系
Emerging Microbes & Infections
[IF=19.568]
作者單位:韓國忠南國立大學獸醫(yī)學院獸醫(yī)公共衛(wèi)生實驗室
摘要:Swine acute diarrhea syndrome coronavirus (SADS-CoV) was reported in China in 2017 and is a causative agent of porcine enteric disease. Recent studies indicate that cells from various hosts are susceptible to SADS-CoV, suggesting the zoonotic potential of this virus. However, little is known about the mechanisms through which this virus enters cells. In this study, we investigated the role of furin in SADS-CoV spike (S)-mediated cell–cell fusion and entry. We found that the SADS-CoV S protein induced the fusion of various cells. Cell–cell fusion was inhibited by the proprotein convertase inhibitor dec-RVKR-cmk, and between cells transfected with mutant S proteins resistant to furin cleavage. These findings revealed that furin-induced cleavage of the SADS-CoV S protein is required for cell–cell fusion. Using mutagenesis analysis, we demonstrated that furin cleaves the SADS-CoV S protein near the S1/S2 cleavage site, 446RYVR449 and 543AVRR546. We used pseudotyped viruses to determine whether furin-induced S cleavage is also required for viral entry. Pseudotyped viruses expressing S proteins with a mutated furin cleavage site could be transduced into target cells, indicating that furin-induced cleavage is not required for pseudotyped virus entry. Our data indicate that S cleavage is critical for SADS-CoV S-mediated cell–cell fusion and suggest that furin might be a host target for SADS-CoV antivirals.
CHEMICAL ENGINEERING JOURNAL
[IF=16.744]
作者單位:中山大學深圳校區(qū)藥學院
JOURNAL OF THROMBOSIS AND
HAEMOSTASIS [IF=16.036]
文獻引用抗體:bs-0196R
Within the vasculature platelets and endothelial cells play crucial roles in hemostasis and thrombosis. Platelets, like endothelial cells, possess intermediate conductance Ca2+-activated K+ (IKCa) channels and generate nitric oxide (NO). Although NO limits platelet aggregation, the role of IKCa channels in platelet function and NO generation has not yet been explored.
Objectives
We investigated whether IKCa channel activation inhibits platelet aggregation, and per endothelial cells, enhances platelet NO production...
BIOMATERIALS
[IF=15.304]
文獻引用抗體:bs-1665R
JOURNAL OF AUTOIMMUNITY
[IF=14.511]
文獻引用抗體:
S0074; Masson trichrome stain
摘要:Lupus nephritis (LN) is the most common cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Currently, immunosuppressive treatments for LN are suboptimal and can induce significant side effects. SB431542 is a selective and potent inhibitor of the TGFβ/Activin/NODAL pathway. Here, we study the effects of SB431542 treatment on LN and discuss the potential mechanisms. SB431542 ameliorated clinical outcomes with a consequent histological improvement in NZB/W mice. A comparative transcriptional profiling analysis revealed 586 differentially expressed genes (247 downregulated genes) in the SB431542 group compared to the control group. We found that the downregulated genes were mainly enriched in the biological processes of B cell activation, B cell proliferation, B cell differentiation, and B cell receptor signaling. Kyoto encyclopedia of genes and genomes pathway analysis revealed that the hematopoietic cell linage pathway was significantly downregulated in the SB431542 group. In addition, we observed that SB431542 reduced the splenic or renal levels of CD20 and the serum levels of anti-dsDNA antibody (IgG) in NZB/W mice. Furthermore, qRT-PCR and immunohistochemistry confirmed that SB431542 inhibits the production of TLR9, TGFβ1, and PDGFB. Thus, due to its immunomodulatory activities, SB431542 could be considered for clinical therapy development for LN.
JOURNAL OF CONTROLLED RELEASE
[IF=11.467]
文獻引用抗體:bs-0560R
Anti-IL13 pAb; IHC,IF
摘要:Diabetic foot ulcer (DFU) is a devastating complication in diabetes patients, imposing a high risk of amputation and economic burden on patients. Sustained inflammation and angiogenesis hindrance are thought to be two key drivers of the pathogenesis of such ulcers. Nitric oxide (NO) has been proven to accelerate the healing of acute or chronic wounds by modulating inflammation and angiogenesis. However, the use of gas-based therapeutics is difficult for skin wounds. Herein, therapeutic NO gas was first prepared as stable microbubbles, followed by incorporation into a cold Poloxamer-407 (P407) solution. Exposed to the DFU wound, the cold P407 solution would rapidly be transformed into a semisolid hydrogel under body temperature and accordingly capture NO microbubbles. The NO microbubble-captured hydrogel (PNO) was expected to accelerate wound healing in diabetic feet. The NO microbubbles had an average diameter of 0.8 ± 0.4 μm, and most of which were captured by the in situ P407 hydrogel. Moreover, the NO microbubbles were evenly distributed inside the hydrogel and kept for a longer time. In addition, the gelling temperature of 30% (w/v) P407 polymer (21 °C) was adjusted to 31 °C for the PNO gel, which was near the temperature of the skin surface. Rheologic studies showed that the PNO gel had mechanical strength comparable with that of the P407 hydrogel. The cold PNO solution was conveniently sprayed or smeared on the wound of DFU and rapidly gelled. In vivo studies showed that PNO remarkably accelerated wound healing in rats with DFU. Moreover, the sustained inflammation at the DFU wound was largely reversed by PNO, as reflected by the decreased levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α) and the increased levels of anti-inflammatory cytokines (IL-10, IL-22 and IL-13). Meanwhile, angiogenesis was significantly promoted by PNO, resulting in rich blood perfusion at the DFU wounds. The therapeutic mechanism of PNO was highly associated with polarizing macrophages and maintaining the homeostasis of the extracellular matrix. Collectively, PNO gel may be a promising vehicle of therapeutic NO gas for DFU treatment.
Redox Biology [IF=10.787]
Mouse Anti-GAPDH mAb; WB
作者單位:北京大學健康科學中心基礎醫(yī)學院人體解剖學、組織學和胚胎學系
※ 點擊這里查看往期單月Bioss抗體產品文獻引用列表